ความก้าวหน้าทางด้านเทคโนโลยีข้อมูล ระบบซอฟแวร์ และเครื่องใช้ไฟฟ้า เป็นสิ่งที่นำไปสู่การใช้อุปกรณ์ที่เกี่ยวกับจอแสดงภาพ (Visual Display Terminal - วีดีที) มากขึ้นโดยเฉพาะเพื่อการทำงานและเพื่อการพักผ่อน วีดีทีจัดว่ามีความสำคัญเพราะช่วยสื่อสารระหว่างผู้ใช้งานและคอมพิวเตอร์ และวีดีทีก่อให้เกิดปัญหาที่พบในวงการจักษุแพทย์ เนื่องจากผู้ใช้งานวีดีทีมักเกิดอาการอ่อนล้าของดวงตา และมักมีอาการปวดกระบอกตาและอาการปวดศีรษะ อาการเหล่านี้เป็นจุดกำเนิดของการศึกษามากมายเกี่ยวกับความปลอดภัยในสถานที่ทำงาน ตัวอย่างเช่น การศึกษาด้านระบาดวิทยาในช่วงสิบปีที่ผ่านมาเกี่ยวข้องกับปัจจัยสำคัญที่เกี่ยวข้องกับความเมื่อยล้าของดวงตา มีบางศึกษาเกี่ยวข้องกับผู้ป่วยถึง 6,000 คน ซึ่งช่วยจำแนกสาเหตุของอาการข้างต้นดังนี้: แสงไม่เพียงพอ สรีระศาสตร์ที่ไม่ดีพอ และการใช้สายตาที่ไม่ถูกต้อง เป็นต้น แม้ว่าจะมีข้อมูลมากขึ้นแต่การติดตามล่าสุดพบว่า การปรับปรุงแก้ไขปัจจัยดังกล่าวได้ผลกับผู้ป่วยเพียง 50% ของผู้ป่วยทั้งหมดเท่านั้น
คำอธิบายที่เป็นไปได้คือ อาจมีปัจจัยร่วมอื่นๆ ที่ยังไม่ถูกค้นพบในปัจจุบัน การปรับปรุงแก้ไขที่ยังไม่เพียงพอ หรืองานที่ต้องใช้สายตาเพิ่มขึ้น เป็นไปได้ว่าสาเหตุของอาการข้างต้นอาจเกิดจากปัจจัยต่างๆ รวมกัน ทำให้การแก้ปัญหาในปัจจุบันไม่เพียงพอต่อการลดอาการเมื่อยล้าของดวงตา
ลักษณะของอาการเมื่อยล้าของดวงตาเกิดจากปฏิกิริยาตอบสนองต่อแสงที่กระทบเข้าดวงตา ได้แก่ อาการปวดศีรษะ เจ็บตา และการมองเห็นไม่ชัด จากแบบสอบถามมาตรฐานที่ใช้สำหรับประเมินอาการเมื่อยล้าทางสายตาของผู้ป่วย มักให้ผลสรุปว่าผู้ป่วยมีอาการเพียงเล็กน้อย โดยอาการเหล่านี้จะทวีความรุนแรงมากขึ้นหากไม่ได้รับการแก้ไขอย่างทันท่วงที การทดสอบทางจักษุวิทยาสามารถตรวจจับปัญหาต่างๆ ที่เกี่ยวกับสายตาเช่นกัน ตัวอย่างเช่น ความสมบูรณ์ในการปรับโฟกัสของสายตา อัตราของปฏิกิริยาการเพ่งของสายตา (ทิศทางบวกและลบ) การรับรู้ของสมองหลังจากประสาทตาได้ส่งสัญญาณไปถึง (CFF) และรูปแบบศักยภาพด้านการมองเห็น (PVEP) จากงานศึกษาทางคลินิกของชาวญี่ปุ่น 9 เรื่องซึ่งดำเนินการโดยองค์กรด้านจักษุวิทยา 6 แห่ง (ดำเนินงานเป็นอิสระต่อกัน) สามารถสรุปประสิทธิภาพของแอสตาแซนธินในด้านการบรรเทาอาการปวดกระบอกตา โดยแอสตาแซนธินช่วยปรับโฟกัสของสายตาให้ดีขึ้น และช่วยฟื้นสภาพของกล้ามเนื้อปรับเลนส์ตา (รูปที่ 1); ระบบไหลเวียนเลือดไปที่เรตินอล
รูปที่1 ตำแหน่งของกล้ามเนื้อปรับสายตาในดวงตาของมนุษย์
อาการเมื่อยล้าของดวงตา
อาการปวดกระบอกตา หรือที่เรียกกันว่าอาการเมื่อยล้าสายตามักเกิดขึ้นในวงจรชีวิตประจำวัน โดยทั่วไปสมรรถภาพการมองเห็นของดวงตาจะลดลงตามธรรมชาติจากช่วงเช้าจนถึงกลางคืน ปัญหานี้จะเพิ่มมากขึ้นหากคุณต้องใช้งานวีดีที 4-7 ชั่วโมงต่อวัน ซึ่งจะส่งผลต่อความสามารถในการปรับโฟกัสของสายตาของกล้ามเนื้อปรับเลนส์ตาซึ่งควบคุมการหด-ขยายของเลนส์ การศึกษาแบบสุ่มซึ่งปกปิดการรักษาทั้งสองฝ่ายร่วมกับการใช้ยาหลอก แสดงให้เห็นถึงประสิทธิภาพด้านบวกของผลิตภัณฑ์เสริมอาหารแอสตาแซนธินที่มีต่อประสิทธิภาพการมองเห็นของมนุษย์ ตัวอย่างเช่น การศึกษาโดย Nagaki และคณะ (2002) พบว่า ผู้ป่วยจำนวน 13 คน ซึ่งได้รับแอสตาแซนธิน 5 มิลลิกรัมต่อวัน เป็นระยะเวลา 1 เดือน ลดการบ่นถึงอาการเมื่อยล้าสายตาลง 54% (รูปที่ 2) การศึกษาด้านการมองเห็นทางด้านกีฬาโดย Sawaki และคณะสรุปว่า การบอกระยะวัตถุและการรับรู้ของสมองภายหลังที่ประสาทตาได้ส่งสัญญาณไปถึง (critical flicker fusion) ดีขึ้น 46% และ 5% ตามลำดับ หลังจากรับประทานแอสตาแซนธินวันละ 6 มิลลิกรัม จำนวน 9 คน ทั้งนี้ผลของแอสตาแซนธินต่อประสิทธิภาพการมองเห็นกระตุ้นให้เกิดการศึกษาทางคลินิกด้านอื่นๆ เป็นจำนวนมาก โดยต่างก็มุ่งหวังจะประเมินปริมาณที่เหมาะสมที่สุดและจำแนกกลไกการออกฤทธิ์
รูปที่ 2 ผู้ป่วยที่ใช้ VDT และมีอาการเครียดทางสายตา ก่อนและหลังการได้รับแอสตาแซนธิน
พบว่า มีอาการดีขึ้น จากการตอบแบบสอบถาม ในสัปดาห์ที่ 4
การลดอาการเมื่อยล้าของดวงตา
การศึกษาโดย Nakamura (2004) แสดงให้เห็นถึงการลดอาการเมื่อยล้าของดวงตาอย่างมีนัยสำคัญและให้ผลบวกในกลุ่มที่ได้รับยาขนาด 4 มิลลิกรัม (p<0.05) และ 12 มิลลิกรัม (p<0.01) Nitta และคณะ (2005) เป็นผู้ริเริ่มการกำหนดขนาดของแอสตาแซนธินที่ควรได้รับในแต่ละวัน คือ 6 มิลลิกรัม จำนวน 10 คน เป็นเวลา 4 สัปดาห์ จากนั้นจึงเปรียบเทียบอาการเมื่อยล้าของดวงตาโดยใช้แบบประเมินระดับความเจ็บปวดซึ่งอ้างอิงจากแบบสอบถามและค่าที่ได้รับจากการประเมิน กล่าวคือกลุ่มที่ได้รับแอสตาแซนธิน 6 มิลลิกรัมมีอาการที่ดีขึ้นอย่างมีนัยสำคัญ ณ สัปดาห์ที่ 2 และ 4 ของการทดสอบ นอกจากนี้ผลจากการศึกษาของ Shiratori และคณะ (2005) และ Nagaki และคณะ (2006) ต่างยืนยันว่า การรับประทานผลิตภัณฑ์เสริมอาหารแอสตาแซนธินขนาด 6 มิลลิกรัมติดต่อกัน 4 สัปดาห์ช่วยลดอาการเมื่อยล้าสายตา อาการเจ็บตา อาการตาแห้ง และการมองเห็นไม่ชัด การศึกษาของ Takahashi และ Kajita (2005) แสดงผลเช่นเดียวกันว่าแอสตาแซนธินช่วยลดอาการเมื่อยล้าของดวงตา (ตรงข้ามกับการรักษาอาการเมื่อยล้าของดวงตา) จึงแนะนำให้ใช้สำหรับป้องกันมากกว่าใช้เพื่อการรักษา โดยกลุ่มที่รับการรักษาด้วยแอสตาแซนธิน (กลุ่มที่ไม่มีอาการเมื่อยล้าของดวงตา) สามารถฟื้นตัวได้ไวกว่ากลุ่มควบคุมหลังจากถูกกระตุ้นการมองเห็นอย่างหนัก
เนื่องจากแบบสอบถามอาจมีข้อจำกัดสำหรับแต่ละบุคคล ดังนั้นการวัดผลปัจจัยต่างๆ ที่เกี่ยวข้องกับการเมื่อยล้าของดวงตาโดยตรงจะเป็นตัวบ่งชี้ที่ดีกว่า ปัจจัยเหล่านี้รวมถึงระยะการปรับโฟกัสของตา (รูปที่3); อัตราของปฏิกิริยาการปรับระดับโฟกัสของตา (ทิศทางบวกและลบ) การทำงานของระบบประสาทส่วนกลางด้านการมองเห็น และการสื่อประสาทของระบบประสาทเกี่ยวกับการมองเห็น จากข้อมูลที่มีอยู่ในปัจจุบันพบว่า การปรับระดับโฟกัสของตาปรับตัวดีขึ้นหลังจากการรักษา (Nagaki และคณะ 2002, 2006; Nakamura และคณะ 2004; Takahashi และ Kajita, 2005; Shiratori และคณะ, 2005; Nitta และคณะ, 2005) อย่างไรก็ตามยังคงไม่มีข้อสรุปที่ชัดเจนเกี่ยวกับการทำงานของระบบประสาทส่วนกลางด้านการมองเห็นและการสื่อประสาทของระบบประสาทเกี่ยวกับการมองเห็น (Sawaki และคณะ 2002; Nagaki และคณะ 2002; Nakamura และคณะ 2004) ดังนั้นกลไกของแอสตาแซนธินด้านการลดความเมื่อยล้าของสายตา คือ การปรับโฟกัสของตา
รูปที่ 3 การปรับโฟกัสของตาในการมองวัตถุ (Nitta และคณะ, 2005)พบว่า
การปรับโฟกัสของตาในการมองวัตถุดีขึ้นเมื่อรับประทานแอสตาแซนธินขนาด 6 มิลลิกรัม
กลไกการออกฤทธิ์: ปรับปรุงระยะการปรับโฟกัสของตา เพิ่มการไหลเวียนเลือด และต้านการอักเสบ
การวัดระยะการปรับโฟกัสของตาจะตรวจวัดคุณสมบัติการหักเหของเลนส์ โดยสอดคล้องกับการทำงานของกล้ามเนื้อปรับเลนส์ตา กล้ามเนื้อลูกตามัดเล็กๆ ทำหน้าที่ควบคุมความหนาของเลนส์เพื่อปรับโฟกัสแสงบนจอประสาทตา หากมีการใช้สายตาอย่างหนักดวงตาจะโฟกัสบนระยะวัตถุคงที่เป็นระยะเวลานานทำให้กล้ามเนื้อหดตัวหรือเกิดความเมื่อยล้า ซึ่งตรวจพบได้จากการทดสอบระยะการปรับโฟกัสของตา การทดสอบเหล่านี้มีความสัมพันธ์ซึ่งกันและกัน และครอบคลุมประเด็นต่อไปนี้: ระยะการปรับโฟกัสของตา ปฏิกิริยาการปรับระดับโฟกัสของตา (ทิศทางบวกและลบ) และองค์ประกอบที่มีความถี่สูง การศึกษาทางคลินิกผสมผสานการทดสอบระยะการปรับโฟกัสของตา เพื่อแสดงถึงปริมาณของอาการเมื่อยล้าที่เกิดขึ้น เช่น การเพิ่มระยะการปรับโฟกัสของตาของผู้ป่วยที่เข้ารับการรักษา แสดงถึงปฏิกิริยาที่ดีขึ้นต่อการมองวัตถุทั้งระยะใกล้และระยะไกล (Nagaki และคณะ 2002, 2006; Nakamura และคณะ, 2004) รูปที่ 4 และ รูปที่ 5 เกี่ยวข้องกับอัตราของปฏิกิริยาการปรับระดับโฟกัสของตาที่เร็วขึ้นจากการตรวจวัดในกลุ่มที่รักษาด้วยแอสตาแซนธิน
รูปที่ 4 การเปลี่ยนแปลงในการปรับโฟกัสของตาในทิศทางบวก (Shiratori และคณะ, 2005)
พบว่า การปรับโฟกัสของตาในทางบวกดีขึ้น เมื่อได้รับแอสตาแซนธิน 6 มิลลิกรัม
รูปที่ 5 การปรับโฟกัสของตาในทิศทางลบ (Shiratori และคณะ, 2005)
พบว่า การปรับโฟกัสของตาในทิศทางลบดีขึ้นเมื่อรับประทานแอสตาแซนธินขนาด 6 มิลลิกรัม
สิ่งเหล่านี้แสดงถึงระดับความเร็วของกล้ามเนื้อปรับเลนส์ตา ต่อการเปลี่ยนทิศทางจุดโฟกัส (ผลบวกหมายถึงระยะวัตถุที่อยู่ใกล้ 35 เซนติเมตร ถึงระยะวัตถุที่อยู่ใกล้ 5 เมตร หรือในทำนองเดียวกัน) (Nitta และคณะ 2005; Shiratori และคณะ 2005; Nakamura และคณะ 2005)่งชี้จากระยะการปรับโฟกัสของตา ้นการมองเห็นอย่างหนัก
ผลจากแอสตาแซนธินจะแสดงอย่างมีนัยสำคัญนับจาก 2 สัปดาห์ เทคนิคอีกประเภทหนึ่งเรียกว่า HFC ซึ่งจะตรวจวัดความผันผวนระดับจุลภาคของเลนส์ ระหว่างการตอบสนองต่อระยะการปรับโฟกัสของตาโดยตรง (ค่าปกติสำหรับระดับสายตาปกติอยู่ระหว่าง 50– 60) ผู้ที่มีอาการปวดกระบอกตาซึ่งมีค่ามากกว่า 60 จะฟื้นตัวได้อย่างรวดเร็ว (รูปที่ 6) โดยที่ผล HFC ของผู้ป่วยเหล่านี้จะลดลงจนถึงระดับปกติอย่างรวดเร็วเมื่อเทียบกับกลุ่มควบคุม (Takahashi และ Kajita 2005)
รูปที่ 6 การฟื้นตัวด้านการปรับโฟกัสของตาซึ่งสังเกตจากความแตกต่างที่ตรวจวัดด้วยเทคนิค HFC (Takahashi และ Kajita, 2005) พบว่า แอสตาแซนธิน ช่วยในการฟื้นตัวด้านการปรับโฟกัสของตาซึ่งตรวจวัดด้วยเทคนิค HFC ระหว่างช่วงการพักภายหลังจากการทำงานที่ใช้สายตา
การศึกษาแบบสุ่มร่วมกับยาหลอกโดย Nagaki และคณะ (2005) ตรวจพบการเพิ่มขึ้นของปริมาณการไหลเวียนเลือดบริเวณเรตินาในกลุ่มที่ได้รับแอสตาแซนธิน 6 มิลลิกรัมเป็นเวลา 4 สัปดาห์ จำนวน 14 คน (p<0.01) เนื่องจากสาเหตุที่แท้จริงเกี่ยวกับการปรับปรุงระยะการปรับโฟกัสของตาซึ่งเกิดจากแอสตาแซนธินยังไม่ชัดเจน ผู้เขียนจึงตั้งสมมติฐานว่า อาจเกิดขึ้นจากการปรับปรุงสภาพการไหลเวียนเลือดที่ดีขึ้นซึ่งตรวจสอบได้จากหลอดเลือดฝอยของเรตินา ซึ่งเสมือนว่ามีเลือดหล่อเลี้ยงกล้ามเนื้อปรับเลนส์ตาเพิ่มขึ้น นอกจากนี้การปรับปรุงสภาพการไหลดังกล่าวยังสอดคล้องกับการศึกษาของ Nagaki และคณะ (2005) ซึ่งศึกษาอาสาสมัครที่มีสุขภาพดี 10 คน และได้รับแอสตาแซนธิน 6 มิลลิกรัมเป็นเวลา 10 วัน (รูปที่ 7) ตรวจพบอัตราการไหลเวียนเลือด (ex-vivo) สูงขึ้นอย่างมีนัยสำคัญ เมื่อเปรียบเทียบกับกลุ่มควบคุม (p<0.05) ซึ่งผ่านการวิเคราะห์ด้วยเครื่องวิเคราะห์ Micro-array channel flow analyzer (MC- FAN)
รูปที่ 7 การเพิ่มการไหลของเลือดในจอประสาทตา (Nagaki et al., 2005)
พบว่า การไหลเวียนของเลือดในจอประสาทตาเพิ่มขึ้นเมื่อใช้สารแอสตาแซนธินเป็นเวลา 4 สัปดาห์
ผลการวิจัยล่าสุด ด้านจักษุวิทยาของญี่ปุ่นซึ่งเป็นความร่วมมือระหว่าง ฮอกไกโด โยโกฮาม่า และเกียวโต สรุปคุณสมบัติด้านการต้านการอักเสบของแอสตาแซนธินที่เกี่ยวกับสารเอนโดทอกซิน ซึ่งกระตุ้นให้เกิดโรคม่านตาอักเสบ (EIU หรือ การอักเสบของตา) ทั้งแบบทดลองในสิ่งมีชีวิตและในหลอดทดลอง Ohgami และคณะ (2003) พบว่าการทดลองให้ปริมาณของแอสตาแซนธิน 1, 10 หรือ 100 มิลลิกรัม/กิโลกรัม ในหนู จำนวน 8 ตัว (p<0.01) ช่วยลดการอักเสบอย่างมีนัยสำคัญ เช่น การสังเคราะห์ไนตริกออกไซด์ (NOS) พรอสตาแกลนดิน E2 (PGE2) และ ทูเมอร์เนโครซิสแฟคเตอร์ (TNF)-α ขณะที่ตัวบ่งชี้ทางชีวภาพอื่นๆ ที่ลดลง ได้แก่ การซึมน้ำของเซลล์ และการสร้างโปรตีนในของเหลวในช่องลูกตา
การศึกษาของ Suzuki และคณะ (2006) ยืนยันถึงประสิทธิภาพของแอสตาแซนธิน พวกเขาทำการศึกษาฤทธิ์ต้านการอักเสบของแอสตาแซนธินที่ม่านตาและกล้ามเนื้อปรับเลนส์ตาในดวงตาของหนู การศึกษาครั้งนี้นับเป็นการศึกษาครั้งแรกซึ่งพิสูจน์ว่า แอสตาแซนธินออกฤทธิ์ลดการกระตุ้น NF-kB ด้วยอนุมูลอิสระใน EIU Rat Model (รูปที่ 8) โดยผลการทดลองพบว่า การตอบสนองของปฏิกิริยาก่อนการอักเสบลดลง มิเช่นนั้นแล้วบริเวณนั้นจะเกิดการอักเสบอย่างถาวร การศึกษาครั้งนี้ช่วยอธิบายว่า เหตุใดแอสตาแซนธินจึงช่วยบรรเทาอาการเมื่อยล้าทางสายตาซึ่งพบในการศึกษาทางคลินิกต่างๆ
รูปที่ 8 จำนวนของเซลล์ NF-kB ในกล้ามเนื้อปรับสายตาในช่วงที่อักเสบ (Suzuki และคณะ 2006) พบว่า แอสตาแซนธินลดจำนวนของเซลล์ที่อักเสบในกล้ามเนื้อปรับสายตา
แอสตาแซนธินต้องผ่านทะลุเข้าผนังกั้นเส้นเลือดที่เรตินาของมนุษย์ (BRB) ซึ่งยังเป็นประเด็นที่ไม่มีหลักฐานชี้ชัดโดยตรงเนื่องจากยังไม่มีวิธีวิเคราะห์ที่น่าเชื่อถือ อย่างไรก็ตาม BRB จัดเป็นผนังกั้นแบบเลือกผ่านที่มีลักษณะคล้ายคลึงกับผนังกั้นเลือดในสมอง (BBB) ดังนั้นจึงคาดหวังว่า แอสตาแซนธินจะสามารถทะลุผ่านผนังกั้นแบบเลือกผ่านเนื่องจากโมเลกุลมีขนาดเล็กกว่า 600 ดาลตัน แอสตาแซนธินเป็นสารแคโรทีนอยด์ กลุ่มแซนโทฟิลล์ เช่นเดียวกับลูทีนและซีแซนทีน ซึ่งตรวจพบมากที่จอประสาทของดวงตา (แซนโทฟิลล์เป็นแคโรทีนอยด์เพียงกลุ่มเดียวที่พบในดวงตา ต่างจากเบต้า-แคโรทีน หรือไลโคปีน ซึ่งอยู่ในกลุ่มแคโรทีน)
อนาคต
อาการเมื่อยล้าของดวงตาเป็นปัญหาที่พบได้ทั่วไปหากเราใช้งานวีดีทีอย่างต่อเนื่องหรือมากเกินไป บางครั้งอาจแก้ปัญหาได้จากการวิเคราะห์หาสาเหตุ ผ่านการศึกษาทางระบาดวิทยาซึ่งเป็นที่นิยมทั่วโลก อย่างไรก็ตามหากแนวโน้มของการปรับปรุงแก้ไขในปัจจุบันมีความสำเร็จเพียง 50% และอาจมีปัจจัยอื่นๆ มาเกี่ยวข้องอีก ดังนั้น แอสตาแซนธินจึงเป็นทางเลือกใหม่สำหรับการลดอาการอักเสบ การปรับปรุงการปรับระยะโฟกัสของสายตา และการเพิ่มการไหลเวียนเลือด
References
1. Iwasaki & Tawara, (2006). Effects of Astaxanthin on Eyestrain Induced by Accommodative Dysfunction. Journal of Eye (Atarashii Ganka) (6):829-834.
2. Suzuki et al., (2006). Suppressive effects of astaxanthin against rat endotoxin-induced uveitis by inhibiting the NF-kB signaling pathway. Exp. Eye Res., 82:275-281.
3. Nagaki et al., (2006). The supplementation effect of astaxanthin on accommodation and asthenopia. J. Clin. Therap. Med., 22(1):41-54.
4. Miyawaki et al., (2005). Effects of astaxanthin on human blood rheology. J. Clin. Therap. Med., 21(4):421-429.
5. Nitta et al. (2005). Effects of astaxanthin on accommodation and asthenopia-Dose finding study in healthy volunteers. J. Clin. Therap. Med., 21(6):637-650.
6. Shiratori et al. (2005). Effect of astaxanthin on accommodation and asthenopia- Efficacy identification study in healthy volunteers. J. Clin. Therap. Med., 21(5):543-556.
7. Takahashi & Kajita (2005). Effects of astaxanthin on accommodative recovery. J. Clin. Therap. Med., 21(4):431-436.
8. Nagaki et al. (2005). The effects of astaxanthin on retinal capillary blood flow in normal volunteers. J. Clin. Therap. Med., 21(5):537-542.
9. Nakamura et al l. (2004). Changes in Visual Function Following Peroral Astaxanthin. Japan J. Clin. Opthal., 58(6):1051-1054.
10. Ohgami et al., (2003). Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Invest. Ophthal. Vis. Sci., 44(6):2694-2701.
11. Nagaki Y., et al., (2002). Effects of astaxanthin on accommodation, critical flicker fusions, and pattern evoked potential in visual display terminal workers. J. Trad. Med., 19(5):170-173.
12. Sawaki, K. et al. (2002) Sports performance benefits from taking natural astaxanthin characterized by visual activity and muscle fatigue improvements in humans. J. Clin. Ther. Med., 18(9):73-88.